Khanna, I. Drug discovery in the pharmaceutical industry: productivity challenges and trends. Drug discovery. Today 171088-1102 (2012).
Google Scholar
Sarkis, M., Bernardi, A., Shah, N. & Papathanasiou, MM Emerging challenges and opportunities in pharmaceutical manufacturing and distribution. Process 9457 (2021).
Google Scholar
Zhuang, W., Hachem, K., Bokov, D., Ansari, MJ & Nakhjiri, AT Ionic liquids in the pharmaceutical industry: a systematic review of applications and future perspectives. J.Mol. Liquids 349118145 (2021).
Google Scholar
Birmingham, B. & Buvanendran, A. 40 – Nonsteroidal anti-inflammatories, acetaminophen and COX-2 inhibitors. In Practical Pain Management (Fifth Edition) (eds Benzon, HT et al.) 553-568.e555 (Mosby, 2014).
Google Scholar
Dallegri, F., Bertolotto, M. & Ottonello, L. A review of the emerging profile of the anti-inflammatory oxaprozin. Expert advice. Pharmacologist. 6777–785 (2005).
Google Scholar
Todd, PA & Brogden, RN Oxaprozin: A preliminary review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 32291–312 (1986).
Google Scholar
Miller, L. Oxaprozin: A once-daily nonsteroidal anti-inflammatory drug. Clin. Pharma. 11591–603 (1992).
Google Scholar
Hojjati, M., Yamini, Y., Khajeh, M., and Vatanara, A. Solubility of some statins in supercritical carbon dioxide and representing solute solubility data with several density-based correlations. J. Superscript. Fluids 41187-194 (2007).
Google Scholar
Foster, N. et al. Processing of pharmaceutical compounds using dense gas technology. Eng. ind. Chem. Res. 426476–6493 (2003).
Google Scholar
Güçlü-Üstündağ, Ö. & Temelli, F. Solubility behavior of ternary systems of lipids, cosolvents, and supercritical carbon dioxide and processing aspects. J. Superscript. Fluids 361–15 (2005).
Google Scholar
Paul, D. et al. Artificial intelligence in drug discovery and development. Drug discovery. Today 2680 (2021).
Google Scholar
Yang, J., Du, Q., Ma, R. & Khan, A. Artificial intelligence simulation of water treatment using a novel bimodal micromesoporous nanocomposite. J.Mol. Liquid. 340117296 (2021).
Google Scholar
El Naqa, I. & Murphy, MJ What is Machine Learning?. In: Machine Learning in Radiation Oncology. 3–11 (Springer, 2015).
Wang, H., Lei, Z., Zhang, X., Zhou, B., and Peng, J. Basics of machine learning. deep learning. 98-164 (2016).
Dietterich, TG Ensemble methods in machine learning. In: International Workshop on Multiple Classification Systems. 1–15 (Springer, 2000).
Zhou, Z.-H. Ensemble Methods: Fundamentals and Algorithms, Chapman and Hall/CRC, 2019.
Freund, Y. & Schapire, RE A generalization of e-learning decision theory and an application to boosting. J. Compute. System Science. 55119-139 (1997).
Google Scholar
Mathuria, M. Decision tree analysis on the j48 algorithm for data mining. Int. J. Adv. Res. Calculation. Science. Software Engineering. 31114-1119 (2013).
Google Scholar
Sakar, A. & Mammone, RJ Growth and pruning of neural tree networks. IEEE Trans. Calculation. 42291–299 (1993).
Google Scholar
Frau, L., Susto, GA, Barbariol, T. & Feltresi, E. Uncertainty estimation for machine learning models in multiphase flow applications. Computer science. 858 (2021).
Google Scholar
Mosavi, A. et al. mapping the water erosion susceptibility of soils using machine learning models. Water 121995 (2020).
Google Scholar
Khosmaram, A. et al. Supercritical process for the preparation of nanomedicine: case study of oxaprozin. Chem. Eng. Technology. 44208–212 (2021).
Google Scholar
Quinonero-Candela, J. & Rasmussen, CE A unifying view of sparse approximate Gaussian process regression. J.Mach. Learn. Res. 61939-1959 (2005).
Google Scholar
Jiang, Y., Jia, J., Li, Y., Kou, Y., and Sun, S. Prediction of two-phase gas-liquid throttling flow using Gaussian process regression. Flow Meas. Instrument. 81102044 (2021).
Google Scholar
Quinlan, JR Learning Decision Tree Classifiers. MCA calculation. Surv. (SCUR) 2871–72 (1996).
Google Scholar
Xu, M., Watanachaturaporn, P., Varshney, PK & Arora, MK Decision Tree Regression for Flexible Classification of Remote Sensing Data. Remote Sensing Approx. 97322–336 (2005).
Google Scholar
Kushwah, JS et al. Comparative study of regressor and classifier with decision tree using modern tools. Mater. Today Proc. 563571–3576 (2021).
Google Scholar
Breiman, L., Friedman, JH, Olshen, RA, and Stone, CJ Classification and regression trees. (Routledge, 2017).
Segal, MR & Bloch, DA A comparison of estimated proportional hazards models and regression trees. Med Statistics 8539–550 (1989).
Google Scholar
Schapire, RE The challenging approach to machine learning: an overview. Nonlinear Estimation and Classification 149–171 (2003).
Ying, C., Qi-Guang, M., Jia-Chen, L. & Lin, G. Advance and Prospects of the AdaBoost Algorithm. Acta Automatica Sinica 39745–758 (2013).
Google Scholar
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning. Springer Series in Statistics (Springer, 2001).
Bishop, CM and Nasrabadi, NM Pattern recognition and machine learning Flight. 4. (New York: Springer, 2006).
Hastie, T., Rosset, S., Zhu, J. & Zou, H. Adaboost multi-classes, statistics and sound. Interface 2349-360 (2009).
Google Scholar
Berk, RA An introduction to ensemble methods for data analysis. Social. Methods Res. 34263–295 (2006).
Google Scholar
Ouyang, Z., Ravier, P. & Jabloun, M. STL decomposition of time series can benefit predictions made by statistical methods, but not by machine learning methods. Eng. proc. 5(1), 42 (2021).
Google Scholar
De Myttenaere, A., Golden, B., Le Grand, B., and Rossi, F. Mean absolute percentage error for regression models. Neuroinformatics 19238–48 (2016).
Google Scholar
Paula, M., Marilaine, C., Nuno, FJ, and Wallace, C. Prediction of long-term wind speed in wind farms in northeast Brazil: a comparative analysis using learning models automatique. IEEE Lat. A m. Trans. 182011-2018 (2020).
Google Scholar
Botchkarev, A. Performance evaluation of regression machine learning models using multiple error metrics in Azure Machine Learning Studio. Available at SSRN 3177507. (2018).
Knez, Z., Skerget, M., Sencar-Bozic, P. & Rizner, A. Solubility of nifedipine and nitrendipine in supercritical CO2. J. Chem. Eng. Data 40216-220 (1995).
Google Scholar